
IJSRSET151351 | Received: 08 June 2015 | Accepted: 13 June 2015 | May-June 2015 [(1)3: 255-259]  

© 2015 IJSRSET | Volume 1 | Issue 3 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

100 

 

Optimized Compression and Decompression Software 

Mohd Shafaat Hussain, Manoj Yadav 

Scholar, Department of Computer Science and Engineering, Al-Falah School of Engineering and Technology, Dhauj,  

Faridabad, Haryana, India 

 
ABSTRACT 
 

This research paper offers data compression practices and matches their performance with the help of a 

software .In this research paper we are going to discuss the software which compare three algorithms, This is the 

software which we are going to compare three compression algorithms Huffman, LZW, LZM .With the help these 

algorithms we capable to compress text file, audio file, video file and images files. The software is basically 

comparing the algorithms on the basis of space complexity, time complexity of the data after compression. 

Technically the purpose of the data compression is to reduce duplicity in the stored and communicated data, thus 

increasing effective data density, Data compression is an important application in file storage and the distributed 

system. So if we need to increase the performance or heighten the speed so data compression is the advantage at 

that moment and compressed data is always suitable to reduce the cost both for storage and communication, data 

compression fundamentally diminishes the size of the data in terms of bits or bytes and the reduced data need 

lesser disk space compare to the data without compression. We have abundant ways to compress the data like text, 

audio, video files .Fundamentally we have two distinct characteristics for data compression and they are lossless 

and lossy compression. In lossless the integrity of the data is always maintained on the other hand In lossy 

compression data reduce by permanently eliminating certain amount of information, especially duplicate 

information, when a file in uncompressed, only a part of the original information is still there, Lossy compression 

commonly used for the audio and the video where certain amount of information is lost which is not examined by 

most of the users.  

Keywords: Compression Software, Optimized  compression, Optimized Decompression , Huffman method , 

Lempel Ziv, Lempel Markov algorithms 

 
 

I. INTRODUCTION 

 

The Data compression is the technique to decrease the 

size of the data by decreasing  the bits [1]  in a frame but 

the sense of the data will not change , and this causes 

many benefits ,it diminishes space to store the data , 

time to transfer the data and of course the price . 

Technically we can say that it is a method to classify the 

duplicity and to eliminate it .There are two significant 

ways used for the development of this data compression 

and  

 

They are (i) Lossless Data Compression (ii) Lossy Data 

Compression. In Lossless data compression the data is 

commonly diminishes but its integrity persist the same 

that is after compression nothing change but only drop 

in the size [2]. Lossless data compression is used in text 

file, database tables and in medical image because of 

law of regulations.  In case of Lossy Compression data 

is reducing by eliminating certain amount of information 

that causes redundancy, when data is uncompressed a 

part of the data always still there [3], Lossy compression 

is used where perfect consistency of the original data is 

not required. Example of Lossy Compression is the 

compression of the video and picture data. Some of the 

main techniques of data compression are Huffman 

coding, Run Length coding, Lempel Ziv, Arithmetic 

Coding Dictionary based coding. In this research paper 

we compare three procedures of the data compression 

that are (1) Huffman Coding (2) Lempel–Ziv-Welch (3) 

Lempel-Ziv-Markov algorithms.  

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

256 

II. METHODS AND MATERIAL 
 

A. Compression Methods used by Software 

 

Data compression in the software fundamentally 

distributed into two parts (1) Lossless data compression 

and (2) Lossy data compression and these two are 

sectioned into other fragments as shown below 

 

 

The Lossless compression commonly deals with the 

compression of the data [2] , where there is a decrease in 

the extent of the bits but the original piece of data 

remains unaffected , It is further divided to other 

fragments they are (1)Run Length coding (2) Huffman 

coding (3) Lempel-Ziv-Welch (4) Lempel-Ziv-Markov 

[4]. The Lossy compression method commonly deals 

with the compression when perfect uniformity with the 

original data is not required. The lossy compression can 

be used for the image, audio and video compression, we 

are going to discuss the ways of lossless data 

compression. 

Compression by Huffman Coding in Software 

 

The simple idea of the Huffman coding is to allocate 

short code words to those of input blocks with high 

probabilities and long code words with low priorities 

[5], this Huffman coding is relatively similar to that of 

Morse coding. This Huffman code is planned by 

merging together the two least probable characters and 

repeating this process till we get only the single 

character [6]. A code tree is thus generated and Huffman 

code is obtained by labeling the code tree. For an 

example below  

 

. 

 

   

The benefit of the Huffman coding is that there is no 

code in the begin of another code .There is no vagueness 

in the code .The receiver can decode the data without 

any vagueness that is why sometimes this is also called 

as instantaneous code. 

 

Huffman coding 

 

Step1: choose two letters x, y from alphabet A with the 

smallest frequencies and generate a sub tree that has 

these two characters leaves. (greedy idea) Label the root 

of this subtree as z. 

Step2: set frequency f(z)=f(x)+f(y). 

Remove x,y and add z creating new alphabet 

A‟=AU{z}-(x,y}. 

repeat this iteration with new alphabet A‟ until an 

alphabet with only one symbol is left. 

 

Huffman Codes 

 

1. Take the characters and their frequencies, and sort this 

list by growing frequency 

2. All the characters are vertices of the tree 

3. Take the first 2 vertices from the list and make them 

children of a vertex having the sum of their frequencies 

4. Add the new vertex into the sorted list of vertices 

waiting to be put into the tree 

5. If there are at least 2 vertices in the list, go to step 3. 

6. Read the Huffman code from the tree 

7. Decrease size of data by 20%-90% in general 

8. If no characters occur more often than others, then no 

advantage over ASCII 

 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

257 

Lempel-Ziv-Welch Encoding Compression in 

Software 

LZ encoding is an example of class of algorithms called 

dictionary based coding [8]. The idea is to create a 

dictionary (table) used during the communication 

session. This compression algorithm extracts the 

smallest substring that cannot be found in the dictionary. 

LZW algorithms does not require advance knowledge .it 

is used for general purpose data compression because of 

its simplicity and versatility.it is used for the pc utilities 

that require space double of your double storage of the 

hard drive. LZW algorithm uses a code table with 4096 

as common choice for most of the entries [9]. When 

coding begins the code table contains only the first 256 

entries, Compression is achieved by using codes 256 

through 4095 to represent the sequence of bytes .As the 

coding continues, LZW identifies repeated sequence in 

the data and adds them in the code table. It is used in 

UNIX compress -- 1D token stream (similar to below). It 

used in GIF compression -- 2D window tokens (treat 

image as with Huffman Coding Above). The LZW 

Compression Algorithm can summarize as follows:  

w = NIL; 

   while (read a character k ) 

       { 

         if wk exists in the dictionary 

          w = wk; 

         else 

           add wk to the dictionary; 

           output the code for w; 

           w = k; 

       } 

 Lempel-Ziv-Markov Used In Software 

 Lempel-Ziv-Markov Chain Algorithm [10] used for 

lossless data compression .this algorithm generally use 

dictionary compression system slightly similar to the 

LZ77 scheme which was published by Abraham Lempel 

and Jacob Ziv. It usually features high compression ratio 

and a variable compression dictionary size .There are 

numerous points on which LZW classifies these are as 

follows ,It has generally high compression ratio , its 

dictionary size variable which is up to 4 gb. Its 

compressing speed is generally 1Mb/s on 2GHz CPU 

while it has decompressing speed of 10-20 Mb/s on 

2GHz CPU. It generally requires small memory 

necessities for the decompression (depend on the size of 

the dictionary).LZMA usually uses a dictionary based 

algorithm whose output is then encoded with a range 

encoder [11].It generally uses a composite model to 

make probability prediction of each bit. Before LZMA 

most encoder model generally purely byte based, the 

benefit of the LZMA is that instead of using byte based 

model, LZMA model using perspective specific to the 

bit fields in each representation of a literals or phrase 

[12]. This is as simple as the of generic byte based 

model but it gives much better compression because it 

usually escapes collaborating of unconnected bits 

together, The reason dictionary size is much larger so 

larger number of memory available to systems. 

 

In LZMA the compressed stream is a stream of bits 

which is normally encoded using an adaptive series 

coder. The stream is distributed into packets each packet 

either labeling a single byte or a LZ77 sequence with its 

length and distance implicitly or explicitly encoded Data 

to be coded Decoded Data. 

 

                      LZMA Coding Scheme 

 

 
B. Decomposition By Lzma 

LZMA data is the minimum level data for 

decomposition [13] which decodes the data one bit at a 

time by the range decoder. Context-Based range 

decoding is invoked by the LZMA algorithms passing it 

as a reference to the context  consist of the unsigned 

11bit variable analysis (typically implemented using a 

16-bit data type) signifying the forecast the probability 

of the bit being 1, which is read and updated by the 

range decoder (and should be initialized to 2^10, 

representing 0.5 probability).Fixed probability range 

decoding instead assumes a 0.5 probability, but 

functions somewhat differently from context-based 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

258 

range decoding [14]. The range decoder state entails of 

two unsigned 32-bit variables, range (representing the 

range size), and code (representing the encoded point 

within the range).Initialization of the range decoder 

entails of setting range to 2^32 - 1, and code to the 32-

bit value starting at the second byte in the stream 

interpreted as big-endian; the first byte in the stream is 

completely unnoticed.  

Decoding proceeds in this way: 

1. Shift both range and code left by 8 bits 

2. Read a byte from the compressed stream 

3. Set the least significant 8 bits of code to the byte 

value read 

Context-based range decoding of a bit using the prob 

probability variable proceeds in this way: 

1. If range is less than 2^24, perform 

normalization 

2. Set bound to floor(range / 2^11) * prob 

3. If code is less than bound:  

1. Set range to bound 

2. Set prob to prob + floor((2^11 - prob) / 

2^5) 

3. Return bit 0 

4. Otherwise (if code is greater than or equal to 

the bound):  

1. Set range to range - bound 

2. Set code to code - bound 

3. Set prob to prob - floor(prob / 2^5) 

4. Return bit 1 

Fixed-probability range decoding of a bit proceeds in 

this way: 

1. If range is less than 2^24, perform 

normalization 

2. Set range to floor(range / 2) 

3. If code is less than range:  

1. Return bit 0 

4. Otherwise (if code is greater or equal than 

range):  

1. Set code to code - range 

2. Return bit 1 

The Linux kernel execution of fixed-probability 

decoding in redirect, for performance reasons, doesn't 

contain a provisional branch, but instead deducts range 

from code unconditionally, and practises the resulting 

sign bit to both elect the bit to return, and to produce a 

mask that is joined with code and added to range. The 

division by 2^11 when calculating bound and floor 

process is done before the multiplication, not afterward 

(apparently to avoid needful fast hardware support for 

32-bit multiplication with a 64-bit result) Static 

probability decoding is not firmly alike to context-based 

range decoding with any prob value, due to the fact that 

context-based range decoding rejects the lower 11 bits of 

range previously multiplying by prob as just defined, 

while fixed probability decoding only rejects the last bit 

Flowchart of Lempel–Ziv–Markov chain algorithm: 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

259 

 

 

III. CONCLUSION 

The Huffman encoder accounts an alphabet or symbol to 

a binary code. The binary code is a mixture of activities 

of binary bits of varied dimensions. The iteratively 

performing alphabet will be symbolized by smaller sized 

binary bits compared with the rarely appearing one 

(Gonzalez and Woods, 2008). Different from Huffman 

coding, the LZW coding sets permanent-length code 

words to variable length order of source symbols (Kelly, 

2007). LZW forms a „dictionary‟ that embraces words or 

parts of words of data. When the data wants to be 

extended, it wants to mention to the dictionary, which in 

turn shows the LZW code for that word. For double 

compression, the combination of Huffman followed by 

LZW (HLZ) and LZW followed by Huffman (LZH) 

were used. Double compression is inspected in this work 

to measure that performance when compressing different 

groups of data. LZMA encoders can easily select which 

match to output, or whether to disregard the existence of 

ties and output literals anyway. The ability to recall the 4 

most recently used distances means that, in principle, 

using a match with a distance that will be needed again 

later may be globally optimal even if it is not locally 

optimal, and as a result of this, optimal LZMA 

compression possibly needs information of the complete 

input and might want procedures too slow to be usable 

in practice. We can evaluate the compression systems by 

taking both of the schemes for compression and check 

which technique will generate the best result. The 

following graph precisely showed the way to judge the 

best scheme among the three schemes. 

 

IV. REFERENCES 

 
[1] Introduction to Data Compression, Khalid Sayood, Ed 

Fox (Editor), March 2000. 

[2] Burrows M., and Wheeler, D. J. 1994. A Block-Sorting 

Lossless Data Compression Algorithm. SRC Research 

Report 124, Digital Systems Research Center. 

[3] Dr. V. Radha and Pushpalakshmi. “Performance Analysis 

of Lossy Compression Algorithms for Medical Images”, 

Journal of Global Research in Computer Science, Vol. 1, 

No. 4, Pp 46-50, 2010. 

[4] James A. Storer, ―Data Compression methods and 

theory‖ Computer Science Press, 1988 

[5] http://www.cstutoringcenter.com/tutorials/algorithms/huff

man.php 

[6] http://michael.dipperstein.com/huffma n/index.html 

[7] http://en.wikipedia.org/wiki/Huffman_coding 

[8] ZIV, J. AND LEMPEL, A. 1978. “Compression of 

individual sequences via variable-rate coding”. IEEE 

Trans. Inform. Theory 24, 5, 530–536 

[9] Hidetoshi Yokoo - “Improved Variations Relating the Ziv 

– Lempel and Welch-Type Algorithms for Sequential 

Data Compression” IEEE Transactions on Information 

Theory. 

[10] http://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E

2%80%93Markov_chain_algorithm 

[11] Zongjie Tu and Shiyong Zhang. A Novel Implementation 

of JPEG 2000 Lossless Coding Based on LZMA. 

[12] http://stackoverflow.com/questions/17523458/how-to-

create-zip-with-lzma-compression 

[13] http://stackoverflow.com/questions/12121062/how-to-

decompress-a-lzma-compressed-file-using-bytearray-

method-in-as3 

[14] https://helpx.adobe.com/flash-player/kb/exception-

thrown-you-decompress-lzma-compressed.html 


